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Abstract

We have developed a mixed Vector Finite Element Method (VFEM) for Maxwell’s equations with a nonlinear polar-
ization term. The method allows for discretization of complicated geometries with arbitrary order representations of the B

and E fields. In this paper we will describe the method and a series of optimizations that significantly reduce the compu-
tational cost. Additionally, a series of test simulations will be presented to validate the method. Finally, a nonlinear wave-
guide mode mixing example is presented and discussed.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Continual growth in the understanding of nonlinear optics has introduced new possibilities in photonic
device design. This growth has been fueled in part by the development of increasingly sophisticated analytical
and numerical models. These models provide researchers with an understanding that enables them to design
optical devices with increasing complexity and subtlty. Device engineers are beginning to examine devices with
complicated geometries such as photonic crystals [1] and arrays of microring resonators [2]. Also, intricate
nonlinear behaviors, such as supercontinuum generation [3], are being studied and considered for use in pho-
tonic devices.

Most optical modeling of nonlinear photonics employs the Slowly Varying Envelope Approximation
(SVEA) to Maxwell’s wave equation with a third order polarization response. This approach leads to the Non-
Linear Schrodinger Equation (NLSE), and this approach illuminates basic nonlinear optical effects such as the
Kerr Effect, Four Wave Mixing, and Self Phase Modulation (SPM) [4]. Some work has been done to model
nonlinear optical devices exhibiting on-axis behavior using the Beam Propagation Method (BPM) with second
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order indices of refraction [5]. These methods are computationally efficient, but do not represent a true solu-
tion to the full Maxwell’s equations. Recently, a great deal of work has been done on modeling the full wave
nonlinear Maxwell equations using a Finite Difference Time Domain (FDTD) approach [6,7]. These methods
allow for full vectoral wave solutions but, but ‘‘staircasing’’ errors are introduced when applied to problems
with curved geometry.

In this paper, we present a full wave 3D Vector Finite Element Method (VFEM) that can be used to model
nonlinear photonics effects in complicated geometries. This method solves the coupled first-order Maxwell’s
equations with a third-order nonlinear polarization term with Debye relaxation. These equations are discret-
ized in space using the Galerkin method with H(curl)-conforming ‘‘edge element’’ basis functions for the elec-
tric field and H(div)-conforming ‘‘face element’’ basis functions for the magnetic flux density. These 3D basis
functions were first proposed in [8] and the properties of these basis functions have been investigated by many
researchers [9–17]. For electrically large problems numerical dispersion is an issue [18–21], and this can mit-
igated by using higher-order basis functions combined with higher-order time integration [22,23]. One disad-
vantage of higher-order basis functions is that the finite element matrices become significantly less sparse.
While there is general agreement on the proper polynomial spaces underlying higher-order hexahedral
H(curl)-conforming and H(div)-conforming basis functions, there is much latitude in the in the specific
degrees of freedom, resulting in various interpolatory, spectral, or hierarchical bases. By combining special
numerical numerical quadratures with special interpolatory degrees of freedom, it is possible to develop a
method that increases the sparsity of the matrices without degrading accuracy [24], and this approach is
employed here.

Two specific issues with using a higher-order finite element method for the nonlinear Maxwell equations are
investigated here. First, the time-discretization of the nonlinear term is designed so that it does not require a
nonlinear Newton-type iteration at every time step, only a standard linear system solution involving a mass
matrix is required. Second, since the permittivity and conductivity are time-varying, the various matrices that
involve these quantities will need to be recomputed at every time step. Whereas a typical nonlinear mechanics
code would simply recompute all matrices from scratch at every time step, since our computational mesh
nodes do not move, computational optimizations are developed that bring memory and CPU usage down sig-
nificantly. Finally, we present a series of validation simulations to demonstrate the accuracy of the new
method, and use the method to examine nonlinear waveguides.
2. Mathematical model

Nonlinear electromagnetic phenomenon in a charge free domain is modeled by Maxwell’s equations
r �D ¼ 0;

r � B ¼ 0;

_B ¼ �r� E;

_D ¼ r� l�1B� rE� Js;

D ¼ �0Eþ PðEÞ;

ð1Þ
where the equations are, respectively, Coulomb’s Law, the absence of magnetic monopoles, Faraday’s Law,
Ampere’s Law, and electronic displacement [25]. We expand the polarization function in the usual power ser-
ies for nonlinear optics [4]:
PðEÞ ¼ �0ðvð1ÞEþ vð2ÞE2 þ vð3ÞE3Þ: ð2Þ

We now restrict the model to isotropic materials so that the second order term is eliminated due to inversion
symmetry, and the third order term to is simplified to v(3) (E Æ E) E with a scalar v(3). We can now express D

from (1) as follows:
D ¼ �eff E;

�eff ¼ �0ðvL þ vNLÞ;
ð3Þ
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where vL and vNL are the linear and nonlinear parts of �eff. Representing D in this manner provides useful
advantages. The nonlinearity is contained within a material response parameter that can be computed explic-
itly, and the splitting provides the flexibility to choose constitutive models separately for the linear and non-
linear portions of the permittivity. For our method we use the usual relative permittivity for the linear part and
introduce a Debye time relaxation for the nonlinear part in order to model finite delay in the nonlinear re-
sponse, specifically
vL ¼ �r;

_vNL þ 1

s
vNL ¼ 1

s
vð3ÞE � E;

ð4Þ
where �r is the usual relative permittivity and s is the material nonlinear response time. Substituting (3) for D in
(1) and carrying out the usual product rule for the time derivative we obtain the final form of Faraday’s law
used in our method.
�eff
_Eþ _�effE ¼ r� l�1B� rE� Js: ð5Þ
The �eff
_E term is the usual time derivative from Faraday’s law with an effective permittivity while the _�eff E term

is a conductivity induced by changes in the nonlinear response field.
3. Vector finite element method

Given the properties of the different vector and scalar fields in (1), a mixed method, with the flexibility to
represent each field in different a finite element space, is a natural choice. Following the approach in [26], we
represent the fields in a discrete differential forms framework, whereby E fields are represented by 1-forms, B

fields by 2-forms, and v(NL) fields by 3-forms. Using this framework ensures that all of the necessary electro-
magnetic field properties are obeyed. For instance, the 1-form basis representations have tangential continuity,
but can allow for normal discontinuities which are expected in E fields at material boundaries. In addition, the
differential forms framework provides a convenient notation to express the semi-discrete finite element
equations.

Although hexahedral elements were chosen, none of the theory in the discrete differential framework limits
the application to these elements. However, the computational optimizations that will be discussed later in this
paper are best defined on a hexahedral geometry.
3.1. Vector basis functions

To begin we introduce the set of Lagrange interpolatory polynomials of degree p. These p þ 1 polynomials
are defined by a distinct set of real valued interpolation points denoted by the symbol X with
X ¼ fx0; x1; . . . ; xpg. They are constructed so that the ith polynomial has a value of 1 at xi and a value of 0
at all other interpolation points. This construction leads to a simple formula for the Lagrange interpolatory
polynomials given by
Lp
i ðx; X Þ ¼

Yp

j¼0
j 6¼i

ðx� xjÞ
ðxi � xjÞ

: ð6Þ
By virtue of this construction, these polynomals satisfy the interpolation property given by
Lp
i ðxj; X Þ ¼ 0; 8i 6¼ j: ð7Þ
Arbitrary order vector basis functions are constructed for all of the fields found in (1) using the Lagrange
interpolatory polynomials within the discrete differential forms framework. For E and Js, p order 1-form inter-
polatory vector basis functions are constructed as follows:
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w1ðxÞ
ijk ¼ Lp�1

k ðx; GÞLp
i ðy; BÞLp

j ðz; BÞx̂;
w1ðyÞ

ijk ¼ Lp
i ðx; BÞLp�1

k ðy; GÞLp
j ðz; BÞŷ;

w1ðzÞ
ijk ¼ Lp

i ðx; BÞLp
j ðy; BÞLp�1

k ðz; GÞ̂z;
for i; j ¼ 0; . . . ; p; k ¼ 0; . . . ; p � 1;

ð8Þ
where G and B represent the Gauss–Legendre and the Gauss–Lobatto quadrature points on the region [0, 1].
These interpolation locations are carefully chosen to be useful for our computational optimizations. It should
also be noted that these 1-form basis functions enforce tangential continuity when degrees of freedom are
shared across adjacent element boundaries while leaving open the possibility of normal discontinuities. This
allows for the accurate modeling of normal discontinuities in the E field across material boundaries.

In a similar manner, p order 2-form interpolatory vector basis functions are constructed to represent B as
follows:
w2ðxÞ
ijk ¼ Lp

kðx; BÞLp�1
i ðy; GÞLp�1

j ðz; GÞx̂;
w2ðyÞ

ijk ¼ Lp�1
i ðx; GÞLp

kðy; BÞLp�1
j ðz; GÞŷ;

w2ðzÞ
ijk ¼ Lp�1

i ðx; GÞLp�1
j ðy; GÞLp

kðz; BÞẑ;
for i; j ¼ 0; . . . ; p � 1; k ¼ 0; . . . ; p:

ð9Þ
These 2-form basis functions enforce normal continuity when degrees of freedom are share across adjacent
element boundaries, while leaving open the possibility for tangential discontinuities. This allows for the accu-
rate modeling of tangential discontinuities in the B field across material boundaries.

Finally, the following p order 3-form interpolatory scalar basis functions are constructed to represent the
time varying constitutive parameters v(NL) and �eff:
w3
ijk ¼ Lp�1

i ðx; GÞLp�1
j ðy; GÞLp�1

k ðz; GÞx̂ for i; j; k ¼ 0; . . . ; p � 1: ð10Þ
These 3-form basis functions do not enforce any continuity since there are no degrees of freedom shared across
element boundaries. This makes them an ideal choice for the material constitutive parameters since material
boundaries are most often discontinuous themselves.

3.2. Vector finite element equations

We follow the standard vector finite element approach and take inner products of three equations from (1),
(5), and (4) with test functions taken from the vector basis functions previously discussed. In addition, each of
the fields in (1) is represented with the basis functions outlined for them previously. This procedure leads to the
following Galerkin form
X
j

_bj/
2
j ;/

2
i

* +
¼

X
j

ejr� /1
j ;/

2
i

* +
;

deff

X
j

_ej/
1
j þ _deff

X
j

ej/
1
j ;/

1
i

* +
¼ l�1

X
j

bjr� /2
j � r

X
j

ej/
1
j �

X
j

jj/
1
j ;/

1
i

* +
;

X
j

ðdeffÞj/
3
j ;/

3
i

* +
¼ �j þ �0

X
j

rj/
3
j ;/

3
i

* +
;

X
j

_rj/
3
j þ s�1

X
j

rj/
3
j ;/

3
i

* +
¼ s�1vð3Þ

X
j

ej/
1
j

 !
�
X

j

ej/
1
j

 !
;/3

i

* +
;

ð11Þ
where b is the 2-form representation of B, e is the 1-form representation of E, deff is the 3-form representation
of �eff, and r is the 3-form representation of vNL. With the application of integration by parts and some trivial
simplifications, this leads to the semi-discrete matrix equations
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M ð2Þ _b ¼ �Dð12Þe;

M ð1Þ
deff

_eþM ð1Þ
_deff

e ¼ ðDð12Þ
l�1 ÞT b�M ð1Þ

r e�M ð1Þjs;

deff ¼ �þ �0r;
_deff ¼ �0 _r;

_r þ r
s
¼ vð3Þ

s
e^ð12ÞM ð2Þ�1

H ð12Þe:

ð12Þ
The matrices in these equations have the following form:
M ð1Þ
a

� �
ij
¼
Z

X
aw1

i � w
1
j dX;

M ð2Þ
a

� �
ij
¼
Z

X
aw2

i � w
2
j dX;

Dð12Þ
a

� �
ij
¼
Z

X
aðr � w1

i Þ � w
2
j dX;

H ð12Þ
a

� �
ij
¼
Z

X
aw1

i � w
2
j dX;

ð13Þ
where M(1) is a 1-form Mass matrix, M(2) is a 2-form Mass matrix, D(12) is a Derivative matrix, and H(12) is a
Hodge matrix. The mass matrices are well known in the finite element community, however the complexity of
the other two requires some explanation. The Derivative matrix is a discrete representation of the curl oper-
ation and transforms a 1-form with material parameter to a 2-form. The Hodge matrix is a simple 1-form to
2-form mapping and can be used to transform from one form to the other using M ð2Þvð2Þ ¼ H ð12Þvð1Þ. It should
be noted that the i and j indices are taken from the proper degrees of freedom within the finite element mesh.
Hence, they are different indices for each matrix. For example the i’s in the Derivative matrix are taken from
the 1-form degrees of freedom in the mesh while the j’s are taken from the 2-form degrees of freedom. Since
there are different numbers of 1-form and 2-form degrees of freedom in a mesh, the Derivative and Hodge
matrices are rectangular.

Another matter of importance is the time dependence of deff, and with it, the time dependence of M ð1Þ
deff

and M ð1Þ
_deff

. Since this parameter changes with time, these mass matrices must be updated at every time
step.

3.3. Time discretization

In order to complete the description of method a time integration scheme is required. For low orders of
accuracy, a simple leap-frog technique will suffice. However, in keeping with the spirit of arbitrary order cal-
culations, an arbitrary order symplectic time integration scheme is applied. Symplectic time integration
schemes are not new, nor is their application to Maxwell’s equations [22], however there is the complication
of the nonlinear response equations. In the scheme these equations are updated at the beginning of each time
integration step with the same time step parameters as e. This approach leads to Algorithm 1, where the a’s
and b’s are the symplectic integration coefficients found in Table 1.

Algorithm 1. kth Order symplectic time-integration scheme

nstep ¼ tfinal�t0

Dt
r1  rinit

e1  einit

b1  binit

for i ¼ 1 to nstep do
rin  ri

ein  ei

bin  bi



Table 1
Symplectic integration coefficients for Algorithm 1

Order 1

a1 ¼ 1 b1 ¼ 1

Order 2

a1 ¼ 1=2 b1 ¼ 0
a2 ¼ 1=2 b2 ¼ 1

Order 3

a1 ¼ 2=3 b1 ¼ 7=24
a2 ¼ �2=3 b2 ¼ 3=4
a3 ¼ 1 b3 ¼ �1=24

Order 4

a1 ¼ ð2þ 21=3 þ 2�1=3Þ=6 b1 ¼ 0
a2 ¼ ð1� 21=3 � 2�1=3Þ=6 b2 ¼ 1=ð2� 21=3Þ
a3 ¼ ð1� 21=3 � 2�1=3Þ=6 b3 ¼ 1=ð1� 22=3Þ
a4 ¼ ð2þ 21=3 þ 2�1=3Þ=6 b4 ¼ 1=ð2� 21=3Þ
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for j ¼ 1 to k do

rout  rin þ bjDt � rin
s þ

vð3Þ

s ein^ð12ÞM ð2Þ�1
H ð12Þein

� �
deff  �þ �0rout
_deff  rout�rin

bjDt
eout  ein þ bjDtM ð1Þ

deff

�1
ðDð12Þ

mu�1ÞT bin �M ð1Þ
r ein �M ð1Þ

_deff
ein �M ð1Þjs

� �
bin  bout þ ajDt �M ð2Þ�1

Dð12Þeout

� �
rin ¼ rout

ein ¼ eout

bin ¼ bout

end for
riþ1  rout

eiþ1  eout

biþ1  bout

end for

efinal  enstepþ1

bfinal  bnstepþ1

All that remains for the description of the method is to define a stable time step Dt. The usual Courant–Fried-
richs–Lewy (CFL) like stability condition for linear electromagnetics methods would be a good starting point
for this nonlinear method. Unfortunately, the nonlinear method is occasionally unstable at such timesteps,
which is not surprising given that similar problems have arisen in nonlinear FDTD methods [7]. However,
simply setting the time step to 50% of the linear stability condition maintained stability for all of the nonlinear
simulations we ran. Thus the CFL like stability condition for the symplectic time integration of our nonlinear
VFEM equations is
Dt 6
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qðaibiM
ð2Þ�1

Dð12ÞM ð1Þ�1

� Dð12ÞT
l�1 Þ

q ; 8i; ð14Þ
where q denotes the spectral radius function and M ð1Þ
� is the usual 1-form mass matrix without the nonlinear

permittivity variation.

4. Computational considerations

Each of the k sub-steps of the higher order time step in Algorithm 1 requires 3 linear system solves. In addi-
tion, the M ð1Þ

deff
and M ð1Þ

_deff
are dynamic, adding 2 matrix formation operations to each sub-step. Finally, the
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memory requirements of this method are high considering that there are up to 8 matrices required to complete
an iteration.

First, the requirement of 3 linear solves per sub-step will be addressed. Within the framework of discrete
differential forms, we can write Dð12Þ ¼ M ð2ÞT ð12Þ where T12 is the Topological Derivative Matrix. This allows
us to drop the matrix solve for the update of bout since the 2-form mass matrices cancel leaving only T12. This
matrix can be computed explicitly with the following projection
T ð12Þ
ij ¼ Proj/2

i
r� /1

j

n o
ð15Þ
which depends only on the topological information in the mesh.
In addition, the linear solve in the update of rout can be dropped if we briefly step away from the framework

of discrete differential forms. Looking back at the mathematical model (1), the right hand side of the nonlinear
response model involves an E � E that must be represented by a 3-form. This can be done without the need for
a linear solve using the following discretization:
E � E � Proj/3
i

X
j

ejw
1
j

 !
�
X

j

ejw
1
j

 !( )
: ð16Þ
In practice this involves using the 1-form basis expansion to compute the E field vectors at the 3-form inter-
polation locations and setting the 3-form degrees of freedom with the E � E values obtained from those vectors.
This approach eliminates the linear solve needed for the wedge product.

The final linear system solve cannot be eliminated in all cases. However, previous work on a lumping
scheme for 1-form mass matrices can be used to reduce the computational cost of this solve by an order
of magnitude on an arbitrary mass matrix, and eliminate the solve entirely on a mass matrix formed with
an orthogonal mesh. The basic approach of this method is to use a set of 4 carefully constructed quad-
rature rules to approximate the 1-form mass matrix integral. In doing so, the mass matrix has far fewer
non-zero entries so that sparse matrix multiplication requires fewer operations. Details can be found in
[24].

Finally, the cost of the complete assembly of 2 mass matrices at each time step can be reduced considerably.
In particular, the work on finite element matrix decomposition in [27] turns out to be quite valuable. Using
these ideas, all of the finite element matrices in the method are decomposed in the following manner
AðpqÞ
m ¼ QT

X
k

MkGk

 !
P ; ð17Þ
where P and Q contain all of the topological information in the finite element mesh, Mi is a diagonal matrix
containing all of the material parameter information needed for the matrix at a particular , and Gi is a block
diagonal matrix containing all of the geometry information in the mesh. The sum runs across the k 3-form
interpolation locations used to store material information on each element. These matrices can be constructed
as follows
P~ij ¼ Projwp
~i

wp
j

n o
;

MkGk ¼

me1
k Ge1

k

me2
k Ge2

k

. .
.

men
k Gen

k

0
BBBBB@

1
CCCCCA;

Q~ij ¼ Projwq
~i
fwq

jg;

ð18Þ
where the ~i runs acress the elemental degrees of freedom the and the j runs across the global degrees of free-
dom. The mea

k values are kth 3-form degrees of freedom for the ath element. These values are exactly the values
found in the 3-form representation of the material parameter. The Gea

k matrices are computed by using the
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bilinear forms found in (13) with the kth 3-form basis in place of the material on the ath element. For example
the G matrices for the 1-form mass matrix would wave the following form
fGea
k g~i~j ¼

Z
X

w3
kw

1
~i � w

1
~j dX; ð19Þ
where the ~i and ~j run across the 1-form degrees of freedom for element a and k runs across the 3-form degrees
of freedom for element a.

In order to better understand how this decomposition works, it is worthwhile examine the action of each
matrix in a matrix vector multiply AðpqÞ

m x. The multiplication by the P matrix is a matrix takes the p-form x

vector and expands it into a non-assembled elemental version of x. The Gk matrix takes the non-assembled
p-form vector and translates it to a non-assembled q-form vector with all of the geometry and derivative infor-
mation that was found in AðpqÞ. The Mk matrix simply applies the material information to the vector. Finally,
multiplication by QT takes the result in non-assembled form and assembles it into the final q-form vector.

The upside of this process is that the time varying material parameters are now removed from the rest of the
matrix so that they can be updated without recomputing the entire matrix. However, one might argue that
there are now more matrices to store and they are larger than than the standard matrices since they work with
non-assembled degrees of freedom. However, memory costs for this approach can actually be reduced to levels
below the requirements for the standard approach in many cases by relatively simple optimizations. First,
since the P and Q matrices only contain topology information for the mesh and a particular p or q form, these
matrices can be shared for all of the matrix decompositions across the entire method. Thus only 3 of these
matrices must be stored, one for each of the three forms that are used in the method. Additionally, for many
meshes, the G matrix can undergo significant compression. Since the G matrix only contains information
about the geometry of the mesh and the derivative information that is uniform across the problem, any num-
ber of elements with the same geometry can be represented with a single elemental matrix. Many meshes have
symmetries that allow this simple form of compression to significantly reduce the memory required for the G

matrix. In the optimal case of a cartesian mesh, the G matrix can be represented by a single elemental matrix.

5. Validation

There is a great need for a rigorous program of validation with the proposal of a new computational
method of this level of complexity. Validation is not only needed to ensure that the method is consistent with
well accepted physical theory but also to determine the levels of error and rates of convergence that are
expected when using the method at various orders of spatial and temporal accuracy.

Some unique complications arise in the case of nonlinear optical modeling. While there is an abundance of
analytical work in the field, most of it provides solutions to the NLSE by using the SVEA. This makes it dif-
ficult to consider precise comparisons, such as L2 error norms, between analytical and computational results
since they are actually solving different equations. Any direct error measurements would need to decouple the
error introduced by the computational method from the error introduced by solving different equations.

Fortunately, by setting the nonlinear parameter v(3) to 0 the computational method reduces to a linear vec-
tor finite element method for electromagnetic simulation that has already been through a great deal of vali-
dation and comparison to linear analytical results [28]. Given those results it is only necessary to test the
physical effects that are introduced by the nonlinear parameter.

5.1. Analysis of the nonlinear response variation

In order to obtain a better understanding of the resolution needed to approximate vNL we perform an ana-
lytical analysis of the nonlinear response to simple sinusoidal oscillations. We begin with the solution to non-
linear response ODE which is found easily using an integrating factor.
vNL ¼ e�
t
s

Z t

0

e
t0
s
vð3Þ

s
E � Edt0: ð20Þ
Considering only the time variation of an infinite plane wave we have an electric field of the form
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E ¼ E0 cos xtŷ; ð21Þ

where x is the radial frequency of the plane wave variations. Using this electric field function and assuming we
are sufficiently far from the initial disturbance of turning the field on, we have the following approximation for
the nonlinear response.
vNL � vð3ÞE2
0

2sx sin 2xt cos 2xt þ 4s2x2 þ 1

8s2x2 þ 2
: ð22Þ
By substituting maximum and minimum values of 1 and �1 for both the sine and the cosine an upper bound
for the range of the variation can be found. An integral over a period of the waves reveals the average value of
the nonlinear response allowing for a bound for the normalized range of
DvNL

�vNL
<

8paþ 2

16p2a2 þ 1
; ð23Þ
where a ¼ s=T which is the response time of the material normalized by the period of the wave. This tells us
that as long as the nonlinear response time is greater than 1 period of the electric field wave, the fast sinusoidal
variations change vNL by less than �8:5% (see Fig. 1). Response times for materials vary from 10�16 s to 10�9 s
which corresponds to 0.03 T to 300,000 T for a wavelength of 1 lm. So all but the fastest responses can be
accurately modeled with the mixed second/first order method. Additionally, the magnitude of the nonlinear
response is typically small compared to the linear response which makes the range of these sinusoidal varia-
tions even smaller compared to the value of the effective permittivity �eff. With such small variations it is rea-
sonable to spatially subsample the fast sinusoidal variations in vNL and focus on having enough resolution to
sample the variation in the magnitude of the wave over longer distances.
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Variation in relative permittivity in response to a sinusoidally varying pulse with a gaussian envelope. s is 1 period of the sinusoidal
on and the nonlinear response is varying by roughly ±8.5%.
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5.2. 1D numerical dispersion

Numerical dispersion is regarded as the dominant source of error in wave modeling simulations, and any
method used to simulate such waves must go through some form of dispersion analysis. Unfortunately, the
complications added by the nonlinear parameter and the time varying mass matrix make a classic numerical
dispersion analysis, such as the one found in [19], infeasible.

However, with the importance of numerical dispersion error in mind, we used another approach to measure
the dispersive effects. A 1 lm · 1 lm · 100 lm rectangular prism was discretized by a 1� 1� 2000 first order
element mesh and a 1� 1� 1000 first order element mesh. Perfect Electric Conductor (PEC) boundary con-
ditions were applied to the top and bottom xz planes, while Neumann boundary conditions were applied to
the yz sides. Sinusoidal time varying voltage sources with vectors in the þy direction were applied to the z ¼ 0
lm ends, while Neumann boundary conditions were applied to the z ¼ 100 lm ends. This had the effect of
injecting plane waves into a configuration that only allows variation in the þz direction, effectively creating
1 dimensional simulations. On the 1� 1� 2000 element mesh first order basis functions were used for all
the fields, and on the 1� 1� 1000 element mesh second order basis functions were used for the E and B fields
while first order basis functions were used for the vNL field.

Plane waves with wavelengths varying from 1.0 lm to 2.0 lm and E field magnitudes varying from 1 V/m to
1:5� 108 V/m were injected into a material with l ¼ l0, � ¼ �0, vð3Þ ¼ 2� 10�18, and s ¼ 2 T where T is the
period of the injected wave. The propagation of these plane waves was simulated through 12000 time steps
of Dt ¼ 2:5� 10�17 s, and snapshots were taken to measure the wave velocities.

The simplicity of this nonlinear electromagnetics problem allows a very reasonable analytical approxima-
tion for the wave velocity to be found. If we consider a time-averaged velocity, over a period of the wave, we
can derive the following equation:
hvi � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
h�effil

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0ð1þ vð1Þ þ 1

2
vð3ÞE2

magÞl
q : ð24Þ
This approximation is derived by assuming that the response time model acts as a flat, unweighted average
over an optical period. This is of course not the case with the Debye relaxation model being used. However,
it is a good approximation since the error will tend to overestimate v half the time and underestimate v the
other half the time, with velocity measurements taken over many optical periods. One effect that is not cap-
tured effectively by that is not captured by this simple mode is the v(3) induced conductivity that arises from the
_�eff E term in (5). This induced conductivity causes some dampening of the plane waves which affects their mag-
nitude and consequently their phase velocity. To correct for this effect, average magnitudes were measured
from the simulated plane waves and used in the model for Emag rather than initial values used for the
simulation.

To complete the analysis of dispersion, error values (see Fig. 2) were obtained by computing the differences
between simulated wave velocities and the velocities given by the analytical model in (24). The method’s order
of accuracy can be found by fitting lines to the data and calculating their slopes. This procedure reveals that in
the linear case, when Emag ¼ 1, the order of accuracy is for first order basis functions is 2.01 which is near the
theoretical limit of 2 expected for linear methods with first order elements [21]. In the significantly nonlinear
case when Emag ¼ 1:5� 108 V/m, the order of accuracy is maintained at 2.00. This indicates that the first order
discretization at these resolutions and magnitudes has dispersion errors that are still dominated by the usual
discretization inaccuracies, and not the addition of the nonlinear response. When using the second/first order
mixed scheme on the 1� 1� 1000 element mesh, the results were more varied. In the linear limit with Emag ¼ 1
the order was 3.84 which is near the theoretical limit of 4. As Emag is raised to 0:5� 108 V/m, 1:0� 108 V/m,
and 1:5� 108 V/m, the order of accuracy falls to 3.31, 2.39, and 1.98 respectively. That with a large nonlin-
earity the second/first order mixed scheme degenerates to second order accuracy, however the behavior with
smaller nonlinearities approaches 4th order accuracy.

Comparing the plots in Fig. 2 shows that even in the case of large nonlinearity with Emag ¼ 1:5� 108 V/m
there is roughly a factor of 10 improvement in dispersion error when using the second/first order mixed
method. This improvement comes at a significant increase in computational cost, however, the factor of 2
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Fig. 2. Relative nonlinear phase velocity error as a function of frequency for first order elements and for the mixed second/first
order method. Physical behavior is essentially linear with Emag ¼ 1 V/m, however the nonlinearity perturbs �eff by 4.5% with
Emag ¼ 1:5� 108 V/m.
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coarsening in the mesh ameliorates that increase. In a full 3 dimensional problem that coarsening reduces
the number of elements by a factor of 8 while the increase to second order basis functions for E requires that
the 1-form elemental mass matrices are 54� 54 with 702 non-zeros instead of 12� 12 with 60 non-zeros for
first order (see [24] for number of non-zero calculations). Since a matrix equation solve involving the 1-form
mass matrix must be performed at every time step the bulk of the work in the method comes from multiplying
all of the element mass matrices by appropriate vectors at each step in the iterative solve. Given that sparse
matrices are used to represent the element mass matrices, the number of multiplications that must be per-
formed scales with the number of matrices and the number of non-zeros per matrix. This leads to an estimate
of 1.46· the amount of work required for the 10· increase in accuracy gained by using the second/first order
mixed method. For comparison, to gain a 10· increase in accuracy using the first order method alone would
require a refinement factor of 3.16 leading to a factor of 31.55· increase in the number of elements in 3 dimen-
sions and a 31.55· increase in computational cost.

5.3. 2D self-focusing

Self focusing is an optical behavior in which the nonlinear dielectric response causes a Gaussian beam to
bend inward and focus while traveling through bulk material. This process is caused by the alteration of
the local index of refraction at the beam due to the Kerr effect. This effect is intensity dependent and given by
neff ¼ n0 þ n2I ;

n2 ¼
1

2n0

vð3Þ;
ð25Þ
where n0 is the usual index of refraction and n2 is the Kerr index. This variation causes parts of the beam at higher
intensities to travel slower than parts of the beam at lower intensities, effectively introducing a distributed Gauss-
ian lens. Usually the lensing effect is more than offset by beam divergence due to diffraction. However, if the beam
intensity is high enough, the lensing effect overcomes the divergence and the beam self-focuses.

While, to date, there are no exact solutions to Maxwell’s equations for this problem, there are reasonable
approximations that capture the flavor of the effect. Early work on the abberationless approximation made the
assumption that the Gaussian Beam remains Gaussian throughout the self-focusing process [29]. This approx-
imation made it possible to calculate the critical beam power at which the beam neither focuses nor diverges.
Later the effect of the abberations was added to refine the critical power predictions, yielding the well known
Kelly formula [30]
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P cr ¼
ð1:22kÞ2v

256n2

;

Ecr ¼
ffiffiffiffiffiffiffiffiffiffiffi
16P cr

vw2
0

s
; ð26Þ
where v is the beam velocity in the medium, and k is the beam wavelength in the medium, and w0 is the beam waist.
We used the method to simulate 2D Gaussian beams of various magnitudes. A 30 lm · 1 lm · 80 lm rect-

angular domain was discretized by 300� 1� 1600 first order elements. PEC boundary conditions were
applied to top and bottom, while Neumann boundary conditions were applied to the sides, effectively elimi-
nating the y dimension. The voltage source on the input end had sinusoidal variation in time and Gaussian
variation in x. This had the effect of introducing a Gaussian beam with a wavelength of 1 lm and an initial
beam waist of w0 ¼ 4 lm. Propagation was simulated through 2500 times steps of Dt ¼ 1:0� 10�16 s with first
order basis functions and time steps, in a material with l ¼ l0, � ¼ �0, vð3Þ ¼ 2:0� 10�18, and s ¼ T ¼
3:333333� 10�15 s. Given those parameters, the Kelly formula yields a critical peak electric field value of
Ecr ¼ 7:625� 107 V/m. Electric field magnitudes were set in terms of this critical value at E0 ¼ 1

4
Ecr,

E0 ¼ Ecr, E0 ¼ 3
2
Ecr, and E0 ¼ 3Ecr in four different simulations. Finally, at the end of the simulation the sinu-

soidal time variation was removed from the E field, allowing the creation of the contour plots found in Fig. 3.
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These plots yield results that are in good agreement with those obtained by the Kelly formula (26). The
beam with power below critical is clearly diverging and both beams with powers above critical are clearly
self-focusing. The beam at the estimated critical power is slowly diverging indicating that the simulated critical
power is very near the power estimated by (26). The small discrepancy is accounted for by the induced con-
ductivity that arises from _deff . This conductivity introduces a small amount of attenuation in the waves that
the Kelly formula does not model.

6. Nonlinear waveguides

Metallic waveguides filled with v(3) nonlinear materials display some interesting nonlinear effects. As is the case
with linear waveguides, the fields of such a guide can be decomposed in a series of Transverse Electric (TE) and
Transverse Magnetic (TM) modes. However, in nonlinear waveguides power is allowed to couple from one mode
to another. Some analytical work has been done in the past to describe simple coupling between the two lowest
order modes [31]. Recent analysis has considered the more general case of excitation of many modes by a dom-
inant fundamental mode [32]. However, when the minor mode powers become a significant fraction of the dom-
inant mode power all the modes begin to interact in a far more complicated manner.

As a display of capability for the method, we simulated general waveguide mode mixing inside guides that
were rectangular and circular in cross-section. The rectangular guide was 0.2 m · 0.4 m · 1 mm modeled with
an 80� 1� 2000 block of first order elements. The material parameters were that of a dielectric glass with
n0 ¼ 1:5 and n2 ¼ 6:66666� 10�19 with the outer walls given PEC boundary conditions. The input end of
the waveguide was excited with the TE20 mode of the guide using a wavelength of k ¼ 20 lm and a field
strength of 5� 108 V/m. The simulation was run for 4000 time steps of Dt ¼ 1:25� 10�15 s and the y compo-
nent of the E field data was captured at the final time. By computing Fourier transforms across x in the guide,
the magnitude in each mode was found at various locations in z (see Fig. 4). This provides a view into the
power transfer occurring between the modes. At the input end of the guide the all of the power is in the
TE20 mode that is being excited by the boundary condition. As the waves begin to travel in z, power is rapidly
drained from the TE20 mode and transferred into higher modes. Once there is enough power in the higher
modes they begin to couple to one another and even transfer power back to the TE20 mode.

The circular guide was a 150 lm long cylinder of radius 0.25 m modeled with an 180 element butterfly cross
section in xy (see Fig. 5) and 500 elements in the propagation direction z. The input end was excited with the
TE11 mode of the guide with a wavelength of 1.5 lm and an E field strength of 1:6� 109 V/m at the center of
the mode. The guide was filled with a dielectric glass with n0 ¼ 1:5 and n2 ¼ 6:66666� 10�19 and a PEC
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Fig. 5. (a) 180 element butterfly pattern used for the cross section of the circular waveguide mesh. (b) Normalized magnitudes found in the
modes of the circular guide at various locations in z (only modes with significant magnitude are displayed). (c) Plot of the initial TE11 E

field. (d) Plot of the E field after significant mode mixing (at z ¼ 1:375� 10�4 m in the guide).
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boundary condition was applied to the outer wall. The simulation was run for 2500 time steps of
Dt ¼ 3� 10�16 s. The second order basis functions were used for the E and B, the first order basis functions
were used for the vNL field, and the second order time integration scheme was used to obtain improved
accuracy.

Using these parameters the simulation required 2,210,464 1-form DOFs, 2,184,720 2-form DOFs, and
90,000 3-form DOFs. The matrices were decomposed using (17) and shared a 1-form P matrix with
4,860,000 non-zero entries, a 2-form P matrix with 3,240,000 non-zero entries, and a 3-form P matrix with
90,000 non-zero entries. The simulation required 4 G matrices, 2 with 54� 54 element blocks, and 2 with
36� 54 element blocks. However, these blocks were only stored for 145 geometrically distinct elements yield-
ing a total storage requirement for G matrices of 1,409,400 real values. The computation time involved in tak-
ing a time step was dominated by the linear solve involving Mdeff

. We used the Preconditioned Conjugate
Gradient (PCG) method with a diagonal preconditioner to handle this solve. On average, the PCG method
converged to a tolerance of 1� 10�21 in 8 iterations. While this method is more computationally expensive
than a full wave FDTD approach, the results are far more accurate. This improved accuracy comes from a
more geometrically accurate mesh that avoids FDTD ‘‘stairstepping’’ problems, and higher order basis func-
tions that yield vastly improved dispersion error.

At the end of the simulation E field values were captured at a series of cross sections orthogonal to z

throughout the guide. In order to measure the distribution of power in the waveguide modes at each location,
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a least squares analysis was performed. This analysis fit the cross-sectional data to a model that consisted of a
block of 16 modes ranging from TE10 to TE43 allowing us to examine the power transfer occurring between
those modes (see Fig. 5).

After the the TE11 mode is injected into the guide, power is rapidly transfered into a variety of other
modes, with the TE21 and TE32 modes receiving the most power. As was the case with the rectangular guide,
the higher order modes begin to transfer power back into the original TE11 mode. After the TE11 mode gains
enough power, it begins to transfer it back to the other modes setting up an oscillatory behavior. This behav-
ior is similar to that found in the simpler case where power is only allowed to couple between 2 low order
modes [31].

7. Conclusions

We have presented a mixed VFEM designed to model electromagnetics with a nonlinear polarization term
on complicated geometries. The method uses arbitrary order Nedelec basis functions within a framework of
discrete differential forms to model the fields in Maxwell’s equations. Additionally, a series of optimizations
that extends the range of problems that can be simulated with this method was discussed. The method has
levels of dispersion error similar to linear VFEM methods, and produces reasonable results for nonlinear
optics test problems, making it suitable for use in computational nonlinear electromagnetics.

References

[1] J.D. Joannopoulos, R.D. MEade, J.N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton,
New Jersey, 1995.

[2] B.E. Little, S.T. Chu, W. Pan, Y. Kokubun, Microring resonator arrays for vlsi photonics, IEEE Photon. Technol. Lett. 12 (3) (2000)
323–325.

[3] R.R. Alfano, The supercontinuum laser source, Springer Verlag, 1989.
[4] R. Boyd, Nonlinear Optics, Academic Press, 2003.
[5] T. Fujisawa, M. Koshiba, Time-domain beam propagation method for nonlinear optical propagation analysis and its application to

photonic crystal circuits, J. Lightwave Technol. 22 (2) (2004) 684–691.
[6] R.M. Joseph, A. Taflove, Fdtd Maxwell’s equations models for nonlinear electrodynamics and optics, IEEE Trans. Ant. Prop. 45 (3)

(1997) 364–374.
[7] R. Ziolkowski, Full-wave vector Maxwell equation modeling of the self-focusing of ultrashort optical pulses in a nonlinear kerr

medium exhibiting a finite response time, J. Opt. Soc. Am. B 10 (2) (1993) 186–198.
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